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Yes, raw speed is important &) GUROB!

OPTIMIZATION

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 2



OPTIMIZATION

‘ But, don’t forget to use the right tools i) GUROBI
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Agenda

Team of Experts
Expert Insights

Tool 1

Multi-objective Optimization

Tool 2

No Relaxation Heuristic

Tool 3

Bilinear Constraints
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Expert Insights

Unlocking key insights for the water industry
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Smart experts,
many many servers

» We have our own private cluster with
HUNDREDS of high-performance servers.

-

« We have the people and the infrastructure to
support you.
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‘ First Example &) GUROB!

Customer: Water Corporation (Australia)

Application: Bore Water Hydrology Allocation

Challenge: Gurobi taking too long to solve

Solution: Expert Insight to restructure
formulation
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‘ Overview of customer interaction

Water Corp sent us a model file. By default — 5% gap in 30 minutes.

The customer's goal:

+ 1% in 10 minutes would be great

* 1% in 30 minutes would be good; or
* 5% in 5 minutes would help whilst troubleshooting.

After tuning for 35 hours across 12 machines - 2% in 30 minutes.

After Simran provided EXPERT INSIGHTS -|0.03% gap in 60 seconds.
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Expert Insight — Reformulation Idea

The model contained a lot of a special type of constraint called indicator constraints

(x=1)=>>c.y<b
If binary variable x takes the value of 1, then add the constraint Yc.y < b
These constraints are nice but sometimes result in slow solves because they are weak.
Simran notices:
« Many constraints had the same indicator variable

« Those indicator variables did not belong in any other constraint just the objective
- Simran found a clever reformulation to exploit this.
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Our Experts are here to help!

» Gurobi invests heavily in our awesome
support team

 Please use us!
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Tool 1: Multi-objective Optimization

Managing conflicting objectives efficiently
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Second Example &) GUROB!
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Customer: Fonterra (New Zealand)

Application: Organic Diary Production
Planning

Challenge: Solve speed and numerical
Issues

Solution: Use our Multi-objective Tools
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Fonterra have
conflicting objectives

Many potentially conflicting objectives during
production:

« Maximize Profit

* Minimize Waste

« Satisfy different entity preferences
* More...




¥ GUROBI
‘ How does Gurobi handle the trade-offs? ) Ert

« Weighted: Optimize a weighted combination of the individual objectives

oBJ1 ¥ oBJ2 EY OBJ3 min wy f1(x) + wa fo(z) + w3 f3(x)

s.t: x €C

« Hierarchical (Lexicographical): Optimize each objective in a priority order given while
limiting the degradation of the higher-priority objectives

OBJ 1 min f1(x) min fz(z) min f3(z)
s.t: x el s.t: el s.t: x€C

fi(z) < e filz) < e

0BJ 3 fa(z) < e

« Weighted + Hierarchical

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 16



“ GUROBI

OPTIMIZATION

How to use multi-objectives

Two options to use multi-objectives:
1. Implement this yourself
2. Use our API

Model . setObjectiveN (LinExpr, index, priority=0, weight=1,
abstol=le-6, reltol=0, name="" )

Benefits of using our API:

« Advanced Techniques: Reduced Cost Fixings

» More efficient presolve abilities

 Better numerical behaviour (more consistent behaviour)
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Fonterra is a global dairy
co-operative owned by around
9,000 farmers who produce
roughly 30% of the world's
dairy exports. The company
is committed to sustainable
practices.

Industry: Agriculture
Location: Global

Use Cases: Inventory Optimization,

Operations, Production, Resource
Optimization
Website: www.fonterra.com

Results

B Aunified view of key
planning problems across
the organization that can be
addressed with the same
solver

B Solve times reduced from
20-40 minutes to roughly one
minute

‘ Fonterra Case-Study

Creating Optimal Product
Mixes for Each Day’s Unique

Dairy Supply

With help from Gurobi, Fonterra uses their new planning model to
sustainably produce nearly a third of the world's dairy exports.

s a dairy co-operative owned

by roughly 9,000 farmers,

Fonterra is committed

to sustainable farming

practices. But being
responsible for 30% of the world's dairy
exports while also trying to do right by
the environment comes with its own set
of challenges, particularly when it comes
to planning.

“The dairy industry is almost like the
petroleum industry in that you have a
‘natural’ product with a composition

you can't control, and you have to make
choices about how to make best use

of the components,” explained Geoff
Leyland, Principal Data Scientist and
Head of the Advanced Analytics team at
Fonterra.

“Milk composition changes every day,
and if one day the milk has more fat than
you forecast, you might end up making
more butter than you originally planned,’
he explained.

Because milk is highly perishable, it must
be processed within twenty-four hours.
And Fonterra’s hardest constraint is that

l & EENE -

they must process all of the milk in this
timeframe.

“That's one of the big challenges of
working with a natural product,” said
Leyland. “We forecast as best we can, but
on the day, we don't know exactly how
much milk of exactly what composition
we will collect, and so we need robust
and flexible plans.”

Building a Unified System for
Optimal Planning

In an effort to address some of those
planning problems, Leyland says many
teams were using spreadsheets. Also,
while they have also used a large-scale
product mix model for the last ten years,
it no longer suits many of their needs.

“It has become clear that we need to go
back to the drawing board and fix things
at the foundational level,” Leyland noted.
“When we were asked to start working on
some of the thornier planning problems,
that's where Gurobi really managed to do
some magic for us.”

LU A Alan duind Viavcan~
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“Gurobi also made suggestions to fine-
tune a production planning LP model,
which brough the solve times down from
20-40mins to roughly one minute”

“The support from Gurobi has exceeded
our expectations. When we talk to Gurobi,

we get smarter.”

“We also tried Xpress and CPLEX, and we
found that not only is Gurobi faster, but it
always finds a solution, which we couldn't

get the other solvers to do reliably.”

Geoff Leyland, Principal Data Scientist and Head of the Advanced
Analytics Team, Fonterra
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Tool 2: No Relaxation Heuristic

Solving problems previously considered too challenging
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‘Third Example &) GUROB!

Industry: Oil and Gas

Application: Downstream distribution
planning

Challenge: Solvers not making any progress
despite using very large machines

Solution: Use our No Relaxation Heuristic




‘ Sometimes default MIP solve not perfect
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Metaheuristics offer a different approach

Examples of metaheuristics In practice, implementing a

- Ant Colony Optimization metaheuristic yourself can be:

- Genetic Algorithms 1. Extremely time consuming.

2. Difficult to maintain.

[- EvqutionaryAIgorithms] 3 Difficult to extend
. Difficult to extend.

 Particle Swarm Optimization

[+ Very Large-Neighborhood Search |

* Simulated Annealing We developed our own!

Metaheuristics:
1. Tryto find high-quality feasible solutions

2. Can keep running forever
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‘ Introducing the No Relaxation Heuristic (NoRel).

0000
0000
0000
O 00 0

Maintains a pool of Define neighborhoods Solve subproblems using Solve procgeds with
incumbent solutions around those solutions traditional Gurobi solve new set of incumbents

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 23



GUROBI

OPTIMIZATION

-/
‘ Introducing the No Relaxation Heuristic (NoRel).
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NoRel is extremely powerful in practice

» The approach can be applied to almost all problem types
« To use set the NoRelHeurTime parameter
 Parallelizes extremely well for large machines
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Tool 3: Bilinear Constraints

Solving the whole problem in the blending industry
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‘ Final Example &) GUROB!

Industry: Continuous Manufacturing

Application: Chemical processing

Challenge: Competitor solver unable to
model the problem directly.

Solution: Use Gurobi’s Bijective
Constraints




& GUROBI
£

OPTIMIZATION

Most solvers only handle convex constraints

X2
max x + X
L XER? L 2
subjectto x; + 2x, < 2
X X1 > 0
fO) =x1+x =%, x, = 0

x* = (2,0)

N

Convexity guarantees solution to be optimal
Fessible Rejion

\\\\

Convexity: A line between any two points in the feasible region, stays within the feasible region

Pl |
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Convex and Non-Convex Quadratics

Products of continuous variables
Forexample,z=x.y

Convex Quadratic Non-Convex Quadratic

N
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Pooling Problems not possible in other solver

Goal: Minimize cost of producing target

Inputs Intermediate Outputs products of a given quality through
Stages blending input products

e yll < B Continuous variables

P, ;1 ° Quaﬂ’[i’[y di,j

s ° Qua“ty Di

Fy | By

P 13 Link quality of tank j with incoming flow:
- < 5 Y ies—()(Pidij)

, p; =

2.ie5—(j)(di,j)
pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal”
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Summary of interaction

« Customer was using a competitor's solver to solve a pooling problem
 QOther solver could not solve non-convex quadratic problems directly.

« Customer had to implement their own heuristic approach as a workaround and obtain
sub-optimal solutions

« Even an older version of Gurobi significantly outperformed their approach.

" Guobiverson | 952

MIPGap 68.60%
Objective $18,050

« 3-4 times cheaper to make the same set of products
« Less waste! Use inputs of less quality to create the same quality outputs
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Gurobi has many tools
that are extremely useful

* Insights from our Expert Team

» Multi-objective Optimization

» No-Relaxation Heuristic

« Bilinear Constraints

* Global MINLP

* Infeasibility Detection Tools
 Distributed Solving

« Automated Tuning tools

» Piecewise-Linear Approximations

« Machine Learning Tools

Generated by ChatGPT
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Thank You

For more information: gurobi.com

Steven Edwards
APAC Lead, Technical Account Manager

edwards@gurobi.com | Phone
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