Overview

Successes with Gurobi's Unique Features and Expert Insights Gurobi Days Korea 2024

Steven Edwards, Ph.D. Team Lead – Technical Account Management

April 2024

0000000000

0 0

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Yes, raw speed is important

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 2

But, don't forget to use the right tools

Agenda

Team of Experts

Expert Insights

Tool 1 Multi-objective Optimization

Tool 2 No Relaxation Heuristic

Tool 3 Bilinear Constraints

Expert Insights

Unlocking key insights for the water industry

Member of our Team of Experts

Dr. Maliheh

Aramon Optimization Engineer

Dr. Simon Bowly Optimization Engineer

Karbstein

Engineer

Optimization

Dr. Gwyneth **Butera** Senior Optimization Engineer

Dr. Alison Cozad Zed Dean **Technical Account** Manager

Manager

Dr. Steven Edwards

Manager

Dr. Rodrigo Fuentes **Technical Account Technical Account** Manager

Dr. Silke Horn Senior Optimization Engineer

Dan Jeffrey Senior Technical Account Manager

Dr. Ed Klotz Senior Mathematical Optimization Specialist

Optimization

Engineer

Jennifer Locke **Technical Account** Manager

Matthias Miltenberger Optimization Support Manager

Dr. Richard Oberdieck Technical Account Manager

Optimization

Dr. Elisabeth **Rodriguez Heck** Optimization

ineer

Ontir

ation Engineer

2

Dr. Mario Ruthmair Optimization Engineer

Dr. Kostja Siefen Dr. David Torres Head of Global Sanchez **Technical Account** Optimization Engineer Management

Dr. Cara Touretzky **Technical Account** Manager

Dr. Eli Towle Optimization Support Manager

Ronald van der Velden **Technical Account** Manager

Dr. Yuriy Zinchenko Senior Optimization

Engineer

Optimization Engineer

We are very loved and experienced

Smart experts, many many servers

- We have our own private cluster with HUNDREDS of high-performance servers.
- We have the people and the infrastructure to support you.

Customer: Water Corporation (Australia)

Application: Bore Water Hydrology Allocation

Challenge: Gurobi taking too long to solve

Solution: Expert Insight to restructure formulation

Overview of customer interaction

Water Corp sent us a model file. By default - 5% gap in 30 minutes.

The customer's goal:

- 1% in 10 minutes would be great
- 1% in 30 minutes would be good; or
- 5% in 5 minutes would help whilst troubleshooting.

After tuning for 35 hours across 12 machines - 2% in 30 minutes.

After Simran provided EXPERT INSIGHTS - 0.03% gap in 60 seconds.

Expert Insight – Reformulation Idea

The model contained a lot of a special type of constraint called *indicator constraints*

 $(x = 1) \Rightarrow \sum c. y \le b$

If binary variable x takes the value of 1, then add the constraint $\sum c. y \leq b$

These constraints are nice but sometimes result in slow solves because they are **weak**.

Simran notices:

- Many constraints had the same indicator variable
- Those indicator variables did not belong in any other constraint just the objective
- \rightarrow Simran found a clever reformulation to exploit this.

Our Experts are here to help!

- Gurobi invests heavily in our awesome support team
- Please use us!

Tool 1: Multi-objective Optimization

Managing conflicting objectives efficiently

Customer: Fonterra (New Zealand)

Application: Organic Diary Production Planning

Challenge: Solve speed and numerical issues

Solution: Use our Multi-objective Tools

Fonterra have conflicting objectives

Many potentially conflicting objectives during production:

- Maximize Profit
- Minimize Waste
- Satisfy different entity preferences
- More...

How does Gurobi handle the trade-offs?

• Weighted: Optimize a weighted combination of the individual objectives

 $\min \ w_1 f_1(x) + w_2 f_2(x) + w_3 f_3(x)$ s.t: $x \in \mathcal{C}$

• **Hierarchical (Lexicographical):** Optimize each objective in a priority order given while limiting the degradation of the higher-priority objectives

min $f_1(x)$	$\min f_2(x)$	$\min f_3(x)$
s.t: $x \in \mathcal{C}$	s.t: $x \in \mathcal{C}$	s.t: $x \in \mathcal{C}$
	$f_1(x) \le \epsilon_1$	$f_1(x) \le \epsilon_1$
		$f_2(x) \le \epsilon_2$

Weighted + Hierarchical

How to use multi-objectives

Two options to use multi-objectives:

- 1. Implement this yourself
- 2. Use our API

Benefits of using our API:

- Advanced Techniques: Reduced Cost Fixings
- More efficient presolve abilities
- Better numerical behaviour (more consistent behaviour)

Fonterra Case-Study

Fonterra is a global dairy co-operative owned by around 9,000 farmers who produce roughly 30% of the world's dairy exports. The company is committed to sustainable practices.

Industry: Agriculture Location: Global Use Cases: Inventory Optimization, Operations, Production, Resource Optimization Website: www.fonterra.com

Results

- A unified view of key planning problems across the organization that can be addressed with the same solver
- Solve times reduced from 20-40 minutes to roughly one minute

Creating Optimal Product Mixes for Each Day's Unique Dairy Supply

With help from Gurobi, Fonterra uses their new planning model to sustainably produce nearly a third of the world's dairy exports.

s a dairy co-operative owned by roughly 9,000 farmers, Fonterra is committed to sustainable farming practices. But being responsible for 30% of the world's dairy exports while also trying to do right by

the environment comes with its own set of challenges, particularly when it comes to planning.

"The dairy industry is almost like the petroleum industry in that you have a 'natural' product with a composition you can't control, and you have to make choices about how to make best use of the components," explained Geoff Leyland, Principal Data Scientist and Head of the Advanced Analytics team at Fonterra.

"Milk composition changes every day, and if one day the milk has more fat than you forecast, you might end up making more butter than you originally planned," he explained.

Because milk is highly perishable, it must be processed within twenty-four hours. And Fonterra's hardest constraint is that

they must process all of the milk in this timeframe.

"That's one of the big challenges of working with a natural product," said Leyland. "We forecast as best we can, but on the day, we don't know exactly how much milk of exactly what composition we will collect, and so we need robust and flexible plans."

Building a Unified System for Optimal Planning

In an effort to address some of those planning problems, Leyland says many teams were using spreadsheets. Also, while they have also used a large-scale product mix model for the last ten years, it no longer suits many of their needs.

"It has become clear that we need to go back to the drawing board and fix things at the foundational level," Leyland noted. "When we were asked to start working on some of the thornier planning problems, that's where Gurobi really managed to do some magic for us." "Gurobi also made suggestions to finetune a production planning LP model, which brough the solve times down from 20-40mins to roughly one minute"

"The support from Gurobi has exceeded our expectations. When we talk to Gurobi, we get smarter."

"We also tried Xpress and CPLEX, and we found that not only is Gurobi faster, but it always finds a solution, which we couldn't get the other solvers to do reliably." Geoff Leyland, Principal Data Scientist and Head of the Advanced Analytics Team, Fonterra

Tool 2: No Relaxation Heuristic

Solving problems previously considered too challenging

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

Industry: Oil and Gas

Application: Downstream distribution planning

Challenge: Solvers not making any progress despite using very large machines

Solution: Use our No Relaxation Heuristic

Sometimes default MIP solve not perfect

Slow root relaxation

9442783	9.8014026e+10	8.192461e+03	0.000000e+00	39779s
9451658	9.8014026e+10	7.339784e+03	0.000000e+00	39786s
9470156	9.8014026e+10	7.289652e+03	0.000000e+00	39793s
9476934	9.8014026e+10	6.589656e+03	0.000000e+00	39800s
9488697	9.8014026e+10	6.595012e+03	0.000000e+00	39819s
9495174	9.8014027e+10	0.000000e+00	0.000000e+00	39903s
9495280	9.8014027e+10	1.788495e+01	0.000000e+00	39920s
9495293	9.8014027e+10	0.000000e+00	0.000000e+00	39936s
Root relax	ation: objective	9.801403e+10,	9495293 iterati	ons, 37539.78 seconds (35149.49 work units)

Slow node progress

Ν	odes	1	Curre	nt Node	е	1	Objective	Bounds	1	W	or}	c
Е	xpl Une	expl	Obj	Depth	II	ntInf	Incumbent	Best	3d Gap	It	/No	ode Time
											/	\frown
	0	0	0.00	000	0	1762	168.00000	0.000	0 100	웅	/-	4505s
	0	0	-0.00	000	0	1623	168.00000	0.000	0 100	8	-	6380s
	0	0	-0.00	000	0	1776	168.00000	0.000	0 100	8	-	7788s
Η	0	0					162.0000000	0.000	0 100	용	-	13016s
	0	0	0.00	000	0	2751	162.00000	0.000	0 100	용	-	19249s
	0	0	0.00	000	0	2644	162.00000	0.000	0 100	8	-	23132s
	0	0	0.00	000	0	2624	162.00000	0.000	0 100	8	-	26440s
	0	0	0.00	000	0	2480	162.00000	0.000	00 100	e e	-	28800s
											· \	

Slow/no feasible solutions found

Nodes	1	Curre	nt Node	e	1	Objec	tive	Bounds	1	Work	
Expl	Unexpl	Obj	Depth	Int	Inf	Incumb	ent	BestBd	Gap	It/No	de Time
0	0	-5385.7	647	0 1	3339			-5385.7647	-	-	28s
0	0	-5277.9	010	0 1	5005	- 1	-	-5277.9010	-	-	81s
0	2	-4610.2	942	0 1	4077		-	-4610.2942	-	-	2142s
1	4	-4354.7	802	1 1	4100		-	4608.2243	-	8993	2149s
3	8	-4116.7	369	2 1	3907		-	4593.4772	-	5149	2191s
7	12	-4078.5	283	3 1	4300		-	4492.2159	-	4986	2200s
11	14	-4082.4	056	3 1	4166		-	-4491.9484	-	4514	2215s
15	18	-4064.6	967	4 1	4256		-	-4491.9484	-	3672	2243s
19	22	-3829.7	080	4 1	4160	1	-	-4491.9484	-	5519	2248s
993	531	-3157.0	875 2	25 1	3633		\int	-4185.2719	-	1190	2638s

No improvement in the bound

N	odes	1	Current Nod	le	Objectiv	e Bounds	1	Work
E	kpl Une	expl	Obj Depth	IntInf	Incumbent	BestBd	Gap	It/Node Time
						\frown		
	0	0	0.00000	0 1762	168.00000	0.00000	100%	- 4505s
	0	0	-0.00000	0 1623	168.00000	0.00000	100%	- 6380s
	0	0	-0.00000	0 1776	168.00000	0.00000	100%	- 7788s
Н	0	0		1	62.0000000	0.00000	100%	- 13016s
	0	0	0.00000	0 2751	162.00000	0.00000	100%	- 19249s
	0	0	0.00000	0 2644	162.00000	0.00000	100%	- 23132s
	0	0	0.00000	0 2624	162.00000	0.00000	100%	- 26440s
	0	0	0.00000	0 2480	162.00000	0.00000	100%	- 28800s
						\setminus \angle		

Metaheuristics offer a different approach

Examples of metaheuristics

- Ant Colony Optimization
- Genetic Algorithms
- Evolutionary Algorithms
- Particle Swarm Optimization
- Very Large-Neighborhood Search
- Simulated Annealing

Metaheuristics:

- 1. Try to find high-quality feasible solutions
- 2. Can keep running forever

In practice, implementing a metaheuristic yourself can be:

- 1. Extremely time consuming.
- 2. Difficult to maintain.
- 3. Difficult to extend.

We developed our own!

Maintains a pool of incumbent solutions

Define neighborhoods around those solutions Solve subproblems using traditional Gurobi solve

Solve proceeds with new set of incumbents

NoRel is extremely powerful in practice

- The approach can be applied to almost all problem types
- To use set the **NoRelHeurTime** parameter
- Parallelizes extremely well for large machines

Tool 3: Bilinear Constraints

Solving the whole problem in the blending industry

Industry: Continuous Manufacturing

Application: Chemical processing

Challenge: Competitor solver unable to model the problem directly.

Solution: Use Gurobi's Bijective Constraints

Most solvers only handle convex constraints

Convexity: A line between any two points in the feasible region, stays within the feasible region

Convex and Non-Convex Quadratics

Products of continuous variables For example, $z = x \cdot y$

Convex Quadratic

Non-Convex Quadratic

Pooling Problems not possible in other solver

pictures from Costa and Liberti: "Relaxations of multilinear convex envelopes: dual is better than primal" Goal: Minimize cost of producing target products of a given quality through blending input products

Continuous variables

- Quantity $q_{i,j}$
- Quality p_i

Link quality of tank j with incoming flow:

$$p_j = \frac{\sum_{i \in \delta^-(j)} (p_i q_{i,j})}{\sum_{i \in \delta^-(j)} (q_{i,j})}$$

Summary of interaction

- Customer was using a competitor's solver to solve a pooling problem
- Other solver could not solve non-convex quadratic problems directly.
- Customer had to implement their own heuristic approach as a workaround and obtain sub-optimal solutions
- Even an older version of Gurobi significantly outperformed their approach.

Gurobi Version	9.5.2
MIPGap	68.60%
Objective	\$18,050

- 3-4 times cheaper to make the same set of products
- Less waste! Use inputs of less quality to create the same quality outputs

Summary

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Gurobi has many tools that are extremely useful

- Insights from our Expert Team
- Multi-objective Optimization
- No-Relaxation Heuristic
- Bilinear Constraints
- Global MINLP
- Infeasibility Detection Tools
- Distributed Solving
- Automated Tuning tools
- Piecewise-Linear Approximations
- Machine Learning Tools

Thank You

For more information: gurobi.com

Steven Edwards APAC Lead, Technical Account Manager

edwards@gurobi.com | Phone

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved