Gurobi 11.0 Every Solution, Globally Optimized

Latest Enhancement in Gurobi 11.0

Chung-Kyun Han Technical Account Manager

April 2024

Performance Improvements

MILP Performance Evolution

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPU E3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 7000 models: - 647 discarded due to inconsistent answers - 1854 discarded that none of the versions can solve - speed-up measured on >100s bracket: 2673 models

LP Performance Evolution

Default settings:

- Gurobi 1 4: •
- dual simplex Gurobi 5+: concurrent LP

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPU E3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM

•

Test set has 2272 models: - 184 discarded due to inconsistent answers - 170 discarded that none of the versions can solve - speed-up measured on >100s bracket: 477 models

Non-convex MIQCP

Performance Evolution

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPU E3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 847 models: - 34 discarded due to inconsistent answers - 269 discarded that none of the versions can solve - speed-up measured on >100s bracket: 229 models

What is non-convex? What are functional constraints?

Global MINLP

Solve non-convex functional constraints exactly

Convexity

Any point in the feasible region to any other point in the feasible region stays within the feasible region

Have support non-convex MIQCP since version 9.0

Non-Convex QP, QCP, MIQP, and MIQCP

- Pooling problem
- Petrochemical industry
- Wastewater treatment
- Emissions regulation
- Agricultural / food industry (

- (blending problem is LP)
- (oil refinery: constraints on ratio of components in tanks)

try (blending based on pre-mix products)

- Mining
- Energy
- Production planning
- Logistics
- Water distribution
- Engineering design
- Finance

(constraints on ratio between internal and external workforce)(restrictions from free trade agreements)(Darcy-Weisbach equation for volumetric flow)

(constraints on exchange rates)

General and Function Constraints

General Constraints

- Max
- Min
- And
- Or
- Abs
- Indicator

SOS1 Constraints

PreSOS1BigM Big-M Constraints

Functional Constraints

- Polynomial
- Exponential
- Natural Exponential
- Logarithm
- Natural Logarithm
- Power
- Sine
- Cosine
- Tangent

Can now solve exactly!

Piecewise-Linear Constraints

SOS2 Constraints

PreSOS2BigM

Big-M Constraints

Nonlinear Constraints

- Gurobi 9.0 and later provide API to define nonlinear functions
 - e^x, a^x
 ln(x), log_a(x)
 sin(x), cos(x), tan(x)
 x^a
 addGenConstrFow()
 addGenConstrPow()
 addGenConstrPoly()
- Gurobi 9.0 10.0:
 - Nonlinear functions are replaced during presolve by a piecewise-linear approximation
- Gurobi 11.0:
 - Can choose to treat nonlinear constraints exactly

Two important concepts for non-convex constraints

Spatial Branching: McCormick Envelopes: Branch on cont. variables Linear outer approximations branching 10 $x \leq 0 \text{ or } x \geq 0$ -10 update relaxation locally -20 pictures from Costa and Liberti: "Relaxations of multilinear $\times 1$ $\times 1$ convex envelopes: dual is better than primal"

PWL Approximation vs. Outer Approximation

^{© 2024} Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

Relaxation of Nonlinear Functions

- Some convex envelopes are easier to approximate than others
 - Example: $y = \ln(x)$, a concave function, $l \le x \le u$
 - Lower envelope is given by secant through $\ln(l)$ and $\ln(u)$
 - Upper envelope is constructed by tangents

Extend to More Complex Functions

If sin is convex within the bounds of $x \dots$

- Upper envelope is given by secant through f(lb) and f(ub)
- Lower envelope constructed by tangents to sin
- Resulting hyperplanes added to LP
- Shaded in red: Relaxation of y = f(x)
- Similar if sin is concave on the domain of x
- Adding more tangents at various points improves the relaxation

Neither Convex Nor Concave

- If sin is neither convex nor concave on the domain of *x*...
- Lower envelope
 - Compute leftmost solution x_0 to $\frac{d}{dx}\sin(x) = \frac{\sin(x) - \sin(lb)}{x - lb}$
 - Computed x_0 defines one tangent
 - Remaining part is convex, use some tangent(s)
- Upper envelope
 - Compute rightmost solution x_1 to $\frac{d}{dx}\sin(x) = \frac{\sin(ub) - \sin(x)}{ub - x}$
 - Computed x_1 defines one tangent
 - Remaining part is concave, use some tangent(s)

"Large" Domains

- Not much to get from the relaxation if domain of *x* is large
- Branching on *x* tightens the relaxation quickly!
- Tighter initial bounds will speed up performance

Spatial Branch and Bound Overview

- Extend MILP branch and bound to more general nonconvexities
- Branch to eliminate nonconvexity violations in convex relaxations
 But branching must be done differently
- Add cuts to tighten the relaxations
 - But cuts must be done differently
- Introduce more general presolve reductions

GUROBI OPTIMIZATION

Basic MILP branch and bound

Solve LP relaxation: x=7.55 fractional; branch on violated integrality restriction Primal (Upper) Bound Root $8 \neq 8$ XSI 4 442 Dual (Lower) Bound Cutoff Active Integer JA. 1 N Why does this work? Feasible solution: Integer Branch at a node so that any feasible (or at • variables have least one optimal) solution to the MILP is integral LP contained in one of the resulting child nodes 4 value Child node objective values are no better than N parent node objective value Infeas At any point in the tree, a better solution can Active only come from an active node or its descendants

Basic nonconvex MINLP branch and bound

Extensions: Branching

• After solving the convex relaxation, how do we branch on the violated nonconvexities?

Z $d^T \tau$ min $c^T r$ s.t. Dz \leq b 0 for all $(i, j) \in S$ = Zii $-x_i x_i$ +non-convex \leq \leq X u $-z - x^2 < 0$ for all $j \in I$ E \mathbb{Z} x_i X branching $x \le t \text{ or } x \ge t$ update relaxation bounds and the

How to relax? How to branch?

associated McCormick envelopes locally

Example of Benefits

- GurobiML automatically embed trained machine learning model into MIP model
- Default neural network activation function...
 - ReLU two-piece piecewise-linear function
- Another commonly used activation function
 - Softmax
 - Typically used in the last layer to translate scores to probabilities
 - Complex non-linear function
- Moved from PWL approximation in 10.0 to dynamic outer approximation in 11.0:
 - 13X performance increase
 - Significantly less error in the results

Gurobi Machine Learning

Regression Models Understood by Gurobi (and which has controllable errors)

- Linear/Logistic regression
- Decision trees
- Neural network with ReLU activation
- Random Forests
- Gradient Boosting trees
- Transformations:
 - Simple scaling of features
 - Polynomial features of degree 2
- Pipelines to combine them dmlc XGBoost
 - "gbtree" booster

- Dense layers
- ReLU layers
- Object Oriented, functional or sequential

O PyTorch

- Dense layers
- ReLU layers
- Only torch.nn.Sequential models

Gurobi Machine Learning

Usage

- Say have trained the following regression with scikit-learn:
 pipeline = make_pipeline(StandardScaler(), MLPRegressor([10]*2))
 pipeline.fit(X_train, y_train)
- Embedding into a Gurobi model

```
m = gp.Model()
```

Add matrix variables for the regression

input = m.addMVar((n_constr, X_train.shape[1]), lb=-GRB.INFINITY)

- output = m.addMVar(n_constr, lb=-gp.GRB.INFINITY)
- # Add predictor constraint

```
pred_constr = add_predictor_constr(m, pipeline, input, output)
```


Use Cases & Examples

<u>Examples – Gurobi Machine Learning documentation (gurobi-machinelearning.readthedocs.io)</u>

MINLP Roadmap for Gurobi 12

- Add API to state composite nonlinear functions directly
 - Use composite nonlinear functions for feasibility checks
 - Use composite nonlinear functions for interior point NLP solver
 - Exploit knowledge about composite nonlinear in presolve and for outer approximation
- Improve global MINLP performance
 - Presolve reductions
 - Cutting planes
 - Improve heuristics to better work with nonlinear constraints
 - Better branching variable and split point selection
- Interior point local NLP solver
 - Expose our internal local NLP solver to the user
 - Provides a locally optimal solution
 - Improve performance and robustness of local NLP solver
- Improve numerics

Thank You

For more information: gurobi.com